Extensions 1→N→G→Q→1 with N=C32 and Q=Dic3⋊C4

Direct product G=N×Q with N=C32 and Q=Dic3⋊C4
dρLabelID
C32×Dic3⋊C4144C3^2xDic3:C4432,472

Semidirect products G=N:Q with N=C32 and Q=Dic3⋊C4
extensionφ:Q→Aut NdρLabelID
C321(Dic3⋊C4) = C62.D6φ: Dic3⋊C4/C22D6 ⊆ Aut C32144C3^2:1(Dic3:C4)432,95
C322(Dic3⋊C4) = C62.3D6φ: Dic3⋊C4/C22D6 ⊆ Aut C32144C3^2:2(Dic3:C4)432,96
C323(Dic3⋊C4) = C33⋊C4⋊C4φ: Dic3⋊C4/C6D4 ⊆ Aut C32484C3^2:3(Dic3:C4)432,581
C324(Dic3⋊C4) = C6.PSU3(𝔽2)φ: Dic3⋊C4/C6Q8 ⊆ Aut C32488C3^2:4(Dic3:C4)432,592
C325(Dic3⋊C4) = C62.19D6φ: Dic3⋊C4/C2×C4S3 ⊆ Aut C32144C3^2:5(Dic3:C4)432,139
C326(Dic3⋊C4) = C62.29D6φ: Dic3⋊C4/C2×C4S3 ⊆ Aut C32144C3^2:6(Dic3:C4)432,187
C327(Dic3⋊C4) = C33⋊(C4⋊C4)φ: Dic3⋊C4/Dic3C4 ⊆ Aut C32488-C3^2:7(Dic3:C4)432,569
C328(Dic3⋊C4) = C62.81D6φ: Dic3⋊C4/C2×C6C22 ⊆ Aut C32144C3^2:8(Dic3:C4)432,453
C329(Dic3⋊C4) = C62.82D6φ: Dic3⋊C4/C2×C6C22 ⊆ Aut C32144C3^2:9(Dic3:C4)432,454
C3210(Dic3⋊C4) = C62.85D6φ: Dic3⋊C4/C2×C6C22 ⊆ Aut C3248C3^2:10(Dic3:C4)432,462
C3211(Dic3⋊C4) = C3×Dic3⋊Dic3φ: Dic3⋊C4/C2×Dic3C2 ⊆ Aut C3248C3^2:11(Dic3:C4)432,428
C3212(Dic3⋊C4) = C3×C62.C22φ: Dic3⋊C4/C2×Dic3C2 ⊆ Aut C3248C3^2:12(Dic3:C4)432,429
C3213(Dic3⋊C4) = C62.80D6φ: Dic3⋊C4/C2×Dic3C2 ⊆ Aut C32144C3^2:13(Dic3:C4)432,452
C3214(Dic3⋊C4) = C3×C6.Dic6φ: Dic3⋊C4/C2×C12C2 ⊆ Aut C32144C3^2:14(Dic3:C4)432,488
C3215(Dic3⋊C4) = C62.146D6φ: Dic3⋊C4/C2×C12C2 ⊆ Aut C32432C3^2:15(Dic3:C4)432,504

Non-split extensions G=N.Q with N=C32 and Q=Dic3⋊C4
extensionφ:Q→Aut NdρLabelID
C32.(Dic3⋊C4) = Dic9⋊C12φ: Dic3⋊C4/C2×C4S3 ⊆ Aut C32144C3^2.(Dic3:C4)432,145
C32.2(Dic3⋊C4) = Dic9⋊Dic3φ: Dic3⋊C4/C2×C6C22 ⊆ Aut C32144C3^2.2(Dic3:C4)432,88
C32.3(Dic3⋊C4) = C18.Dic6φ: Dic3⋊C4/C2×C6C22 ⊆ Aut C32144C3^2.3(Dic3:C4)432,89
C32.4(Dic3⋊C4) = C3×Dic9⋊C4φ: Dic3⋊C4/C2×C12C2 ⊆ Aut C32144C3^2.4(Dic3:C4)432,129
C32.5(Dic3⋊C4) = C6.Dic18φ: Dic3⋊C4/C2×C12C2 ⊆ Aut C32432C3^2.5(Dic3:C4)432,181

׿
×
𝔽